Nuprl Lemma : chain-path-ordered-same-loc3 13,45

es:ES, Cmd:Type, In:AbsInterface(Cmd), isupdate:(Cmd), SysOut:AbsInterface(Top).
(E(Inr E(Sys))
 (f:sys-antecedent(es;Sys).
 (e:E(In). f(e) = e  E)
  (chain:(E(Sys)(Id List)).
  chain-consistent(f;chain)
   (xz:E(Sys). x is f*(z (y:E(Sys). (x <loc y y loc z   x is f*(y))))) 
latex


Upabstract chain replication
Definitionsfirst(e), pred(e), pred!(e;e'), SWellFounded(R(x;y)), kind(e), loc(e), constant_function(f;A;B), r  s, val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), , , Msg(M), kindcase(ka.f(a); l,t.g(l;t) ), xt(x), EState(T), EOrderAxioms(Epred?info), Unit, EqDecider(T), x,yt(x;y), {T}, x.A(x), locl(a), Knd, IdLnk, f**(e), loc(e), t.1, let x,y = A in B(x;y), (e < e'), e < e', (e <loc e'), y=f*(x) via L, y is f*(x), False, !Void(), , strong-subtype(A;B), a:A fp B(a), e c e', f(a), Top, no_repeats(T;l), (x  l), adjacent(T;L;x;y), e loc e' , L1  L2, hd(l), P & Q, P  Q, A, a < b, P  Q, Id, x:AB(x), {x:AB(x)} , left + right, b, x:A  B(x), chain-consistent(f;chain), type List, x:AB(x), E, <ab>, E(X), sys-antecedent(es;Sys), x:AB(x), , AbsInterface(A), Type, ES, t  T, s = t, ||as||, Y, rec-case(a) of [] => s | x::y => z.t(x;y;z), n+m, last(L), l[i], nth_tl(n;as), if b then t else f fi , case b of inl(x) => s(x) | inr(y) => t(y), if a<b then c else d, n - m, tl(l), {i..j}, , i  j < k, A  B, can-apply(f;x), isl(x), Atom$n, rcv?(e), ecase1(e;info;i.f(i);l,e'.g(l;e')), sender(e), , Ax, link(e), R^+, , rel_exp(TRn), int_eq(abcd), outl(x), token{$token:t}, destination(l), pi2(t), source(l), x,y:A//B(x;y), b-union(AB), int_nzero, nequal(Tab), isint(zab), multiply(nm), islocal(k), inr x , rcv(ltg), inl x , actof(k), outr(x), state_when(einfopred?initTransvaltime), when-after(einfopred?initTransvaltime), let(ax.b(x)), es-shift(sr), qadd(rs), qsub(rs), qmul(rs), -n, isrcv(k), lnk(k), tagof(k), a  b, grp_le(g), qadd_grp, qpositive(r), x:A.B(x), es-pred?(es), es_info(es), p q, p  q, p  q, b, e = e', deq-member(eq;x;L), a = b, a = b, qeq(r;s), q_less(a;b), q_le(r;s), eq_atom$n(x;y), [d], a < b, x f y, a < b, null(as), x =a y, (i = j), i j, i <z j, p =b q, e  X, e(e1,e2].P(e), e[e1,e2].P(e), e[e1,e2].P(e), e[e1,e2).P(e), e[e1,e2).P(e), ee'.P(e), e<e'P(e), ee'.P(e), e<e'.P(e), Dec(P), SQType(T), s ~ t, True, T, tt, ff, f(x)?z, P  Q, P  Q, f  g, IsPrimeIdeal(R;P), IsIntegDom(r), IsMonHom{M1,M2}(f), IsGroup(T;op;id;inv), IsMonoid(T;op;id), monot(T;x,y.R(x;y);f), Cancel(T;S;op), FunThru2op(A;B;opa;opb;f), fun_thru_1op(A;B;opa;opb;f), Dist1op2opLR(A;1op;2op), IsAction(A;x;e;S;f), IsBilinear(A;B;C;+a;+b;+c;f), BiLinear(T;pl;tm), Inverse(T;op;id;inv), Comm(T;op), Assoc(T;op), Ident(T;op;id), CoPrime(a,b), Connex(T;x,y.R(x;y)), AntiSym(T;x,y.R(x;y)), Trans(T;x,y.E(x;y)), Sym(T;x,y.E(x;y)), Refl(T;x,y.E(x;y)), IsEqFun(T;eq), Inj(A;B;f), InvFuns(A;B;f;g), a =!x:TQ(x), SqStable(P), l_disjoint(T;l1;l2), Outcome, q-rel(r;x), r < s, (xL.P(x)), xLP(x), A c B, a < b, a <p b, a  b, a ~ b, b | a, x <<= y, as @ bs, (last change to x before e), lastchange(x;e), es-first-from(es;e;l;tg), isrcv(e), es-init(es;e), x << y, pred(e), first(e), kind(e), @e(xv), e(e1,e2].P(e), increasing(f;k), X(e), #$n, t  ...$L
Lemmasadjacent wf, and functionality wrt iff, sublist wf, es-le-not-locl, es-locl irreflexivity, es-le weakening eq, chain-order-le antisymmetry, rev implies wf, iff wf, es-locl-iff, implies functionality wrt iff, all functionality wrt iff, es-first wf, es-loc-pred, squash wf, es-le-loc, es-isrcv-loc, Id sq, chain-path-ordered, decidable assert, sq stable from decidable, bfalse wf, btrue wf, true wf, es-is-interface wf, false wf, guard wf, decidable equal es-E-interface, fun-connected-step, fun-connected transitivity, decidable es-locl, es-locl transitivity2, es-causl weakening, es-locl-antireflexive, subtype rel wf, sys-antecedent wf, es-E-interface wf, member wf, es-E wf, assert wf, es-E-interface-subtype rel, not wf, fun-connected wf, fun-path wf, es-le wf, es-locl wf, es-causl wf, es-loc wf, Id wf, fun-connected-induction, chain-consistent wf, event system wf, deq wf, unit wf, IdLnk wf, EOrderAxioms wf, EState wf, Knd wf, kindcase wf, Msg wf, nat wf, rationals wf, val-axiom wf, cless wf, qle wf, bool wf, constant function wf, top wf, es-interface wf, es-causle wf, strongwellfounded wf, pred! wf, loc wf

origin